Abstract

Beta-SiC thin films are currently being grown via chemical vapor deposition (CVD) at North Carolina State University for potential use as a semiconductor material. Silicon carbide is a wide bandgap semiconductor with a high, saturated electron drift velocity and, as such, is a primary candidate material for high-temperature, high-speed, and high-frequency electronic devices. The β-SiC thin films are epitaxially grown on {100} silicon substrates by CVD of silicon and carbon from vapors of SiH4 and C2H4entrained in H2at a growth temperature of 1633 K. Since there is a lattice mismatch of -20% and a difference in thermal expansion coefficients of ∼10% between the silicon substrate and β-SiC, the silicon surface is reacted with C2H4 at 1583 K. for 150 s to form a converted β-SiC surface layer, approximately 5 nm thick, which helps prevent the formation of cracks during the growth of the thin films. The films are grown at a rate of ∼2 μm/h and are grown as thick as 40 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.