Abstract

The brain is one of the most common metastatic sites in non-small cell lung cancer (NSCLC), which is associated with an extremely poor prognosis. Despite the availability of several therapeutic options, the treatment efficacy remains unsatisfactory for NSCLC brain metastases. Anti-programmed cell death-1 (PD-1) and its ligand (PD-L1) monoclonal antibodies have reshaped therapeutic strategies in advanced NSCLC. Preliminary evidence has shown that anti-PD-(L)1 monotherapy is also effective in NSCLC patients with brain metastases. However, the traditional view asserted that these therapeutic antibodies were incapable of crossing the blood-brain barrier (BBB) with large molecular size, thus most patients with brain metastases were excluded from most studies on anti-PD-(L)1 immunotherapy. Therefore, the efficacy and its mechanisms of action of anti-PD-(L)1 immunotherapy against brain metastases in NSCLC have not been clarified. In this review, we will survey the underlying mechanisms and current clinical advances of anti-PD-(L)1 immunotherapy in the treatment of brain metastases in NSCLC. The trafficking of activated cytotoxic T cells that are mainly derived from the primary tumor and deep cervical lymph nodes is critical for the intracranial response to anti-PD-(L)1 immunotherapy, which is driven by interferon-γ (IFN-γ). Additionally, promising combined strategies with the rationale in the treatment of brain metastases will be presented to provide future directions for clinical study design. Several significant challenges in the preclinical and clinical studies of brain metastases, as well as potential solutions, will also be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call