Abstract

Tribulus terrestris (T.T.) is a rich source of flavonoids and saponins, which have been reported to have neuroprotective and antioxidant potential. The current study was planned to investigate the anti-Parkinson’s activity of T. terrestris methanol extract (TTME). It was hypothesized that TTME possessed antioxidant potential and can ameliorate Parkinson’s disease (PD) via modulation of α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. To test this hypothesis, in silico and in vivo studies were performed. The PD model in rats was prepared by giving haloperidol, 1 mg/kg, i.p. Rats were divided into six groups: control, disease control, standard, and treatment groups receiving TTME orally at 100, 300, and 1000 mg/kg dose levels for 21 days. Behavioral observations and biochemical analyses were done. The TTME modulatory effect on mRNA expression of α-synuclein, AChE, TNF-α, and interleukins in the brain homogenate was estimated by RT-PCR. Compounds detected in HPLC analysis disrupted the catalytic triad of AChE in in silico studies. Behavioral observations showed significant (p < 0.05) improvement in a reversal of catatonia, muscular strength, locomotor functions, stride length, and exploration in a dose-dependent manner (1000 >300 >100 mg/kg) of PD rats. Endogenous antioxidant enzyme levels CAT, SOD, GSH, and GPx were significantly restored at a high dose (p < 0.05) with a notable (p < 0.05) decrease in the MDA level in TTME-treated groups. TTME at a high dose significantly (p < 0.05) decreased the level of acetylcholinesterase. RT-PCR results are showing down-regulation in the mRNA expression levels of IL-1β, α -synuclein, TNF-α, and AChE in TTME-treated groups compared to the disease control group, indicating neuroprotection. It is concluded that TTME has potential to ameliorate the symptoms of Parkinson’s disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call