Abstract

The opioid peptides localized in striatal projection neurons are of great relevance to Parkinson's disease, not only as a consequence of their distribution, but also due to the pronounced changes in expression seen in Parkinson's disease. It has long been suspected that increased expression of enkephalin may represent one of the many mechanisms that compensate for dopamine (DA) depletion in Parkinson's disease. Here we demonstrate that a systemically delivered, selective δ opioid agonist (SNC80) has potent antiparkinsonian actions in both rat and primate models of Parkinson's disease. In rats treated with either the D2-preferring DA antagonist haloperidol (1 mg/kg) or the selective D1 antagonist SCH23390 (1 mg/kg), but not a combination of D1 and D2 antagonists, SNC80 (10 mg/kg) completely reversed the catalepsy induced by DA antagonists. In rats rendered immobile by treatment with reserpine, SNC80 dose-dependently reversed akinesia (EC50 7.49 mg/kg). These effects were dose-dependently inhibited (IC50 1.05 mg/kg) by a selective δ opioid antagonist (naltrindole) and by SCH23390 (1 mg/kg), but not by haloperidol (1 mg/kg). SNC80 also reversed parkinsonian symptoms in the MPTP-treated marmoset. At 10 mg/kg (ip), scores measuring bradykinesia and posture were significantly reduced and motor activity increased to levels comparable with pre-MPTP-treatment scores. Any treatment that serves to increase δ opioid receptor activation may be a useful therapeutic strategy for the treatment of Parkinson's disease, either in the early stages or as an adjunct to dopamine replacement therapy. Furthermore, enhanced enkephalin expression observed in Parkinson's disease may serve to potentiate dopamine acting preferentially at D1 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call