Abstract

Parity-time (PT) symmetry in non-Hermitian optical systems promises distinct optical effects and applications not found in conservative optics. Its counterpart, anti-PT symmetry, subscribes another class of intriguing optical phenomena and implies complementary techniques for exotic light manipulation. Despite exciting progress, so far, anti-PT symmetry has only been realized in bulky systems or with optical gain. Here, we report an on-chip realization of non-Hermitian optics with anti-PT symmetry by using a fully passive, nanophotonic platform consisting of three evanescently coupled waveguides. By depositing a metal film on the center waveguide to introduce strong loss, an anti-PT system is realized. Using microheaters to tune the waveguides’ refractive indices, striking behaviors are observed such as equal power splitting, synchronized amplitude modulation, phase-controlled dissipation, and transition from anti-PT symmetry to its broken phase. Our results highlight exotic anti-Hermitian nanophotonics to be consolidated with conventional circuits on the same chip, whereby valuable chip devices can be created for quantum optics studies and scalable information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call