Abstract

In 2013 a novel self-assembly strategy for polypeptide nanostructure design which could lead to significant developments in biotechnology was presented in Gradišar et al. (Nat Chem Bio 9:362-366, 2013). It was since observed that a polyhedron P can be realized by interlocking pairs of polypeptide chains if its corresponding graph G(P) admits a strong trace. It was since also demonstrated that a similar strategy can also be expanded to self-assembly of designed DNA (Kočar, Nat commun 7:1-8, 2016). In this direction, in the present paper we characterize graphs which admit closed walk which traverses every edge exactly once in each direction and for every vertex v, there is no subset N of its neighbors, with [Formula: see text], such that every time the walk enters v from N, it also exits to a vertex in N. This extends Thomassen's characterization (Thomassen, J Combin Theory Ser B 50:198-207, 1990) for the case [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.