Abstract
AbstractAntioxidants play an important role in adapting plants to abiotic stress by detoxifying reactive oxygen species (ROS). Involvement of antioxidant enzymes in abiotic stress tolerance of highly stress‐tolerant quinoa was studied in a climatic chamber at 6 mOsm (milliosmolar) ionic (300 mm NaCl) and non‐ionic (600 mm mannitol) salts combined with increasing levels of potassium K1 and K2 (6, 12 mm), respectively. Fifteen days of salt treatment (both ionic and non‐ionic) decreased plant growth (shoot and root fresh weight), stomatal conductance and chlorophyll content index. Furthermore, both forms of salt stress increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase up to 2.33‐, 3.98‐, 4.78‐ and 5.55‐folds, respectively, compared to no salt treatment, whereas membrane stability index decreased corresponding to increase in lipid peroxidation (malondialdehyde), with salt treatments compared to non‐stressed plants. However, no significant effect of potassium and salt treatments has been noticed on the maximal photochemical efficiency of PSII. The results suggested that enhanced antioxidant enzymes activity under salt stress could be one of the factors responsible for abiotic stress tolerance in quinoa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.