Abstract

The ability of bacteria to overcome oxidative stress is related to the levels and types of antioxidative mechanisms which they possess. In this study, the antioxidative properties in Lactobacillus sake strains from different food origins were determined at low temperature (8 degrees C) and upon exposure to oxygen levels between 20 and 90% O(2). The L. sake strains tested grew well at 8 degrees C and in the presence of 20% O(2), however, most of the strains could not grow at O(2) levels as high as 50 and/or 90%. Cell-free extracts of all strains possessed certain levels of hydroxyl radical scavenging, metal chelating and reducing capacities essential for growth of cells at ambient O(2). At elevated O(2) concentrations, a high H(2)O(2) splitting capacity and low specific rates of H(2)O(2) production were demonstrated in the O(2)-insensitive strain L. sake NCFB 2813, which could grow at elevated O(2) conditions. Although H(2)O(2) was generated in the O(2)-sensitive L. sake DSM 6333 at levels which were not directly toxic to the cells (<0.2 mM), we can conclude that its removal is essential for cell protection at elevated O(2) conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.