Abstract

Glycosylated ascorbic acids were synthesized by using the transglycosylation activity of Bacillus stearothermophilus maltogenic amylase with maltotriose to show effective antioxidative activity with enhanced oxidative stability. The modified ascorbic acids comprised mono- and di-glycosyl transfer products with an alpha-(1,6)-glycosidic linkage. The antioxidative effects of the glycosyl derivatives of ascorbic acid on the lipid oxidation of cooked chicken breast meat patties were compared, and the synergistic effect when combined with alpha-tocopherol was determined in terms of thiobarbituric acid-reactive substances (TBARS) and volatiles production during storage. The results indicate that the glycosylated ascorbic acids had very effective antioxidative activity in preventing lipid oxidation, and were better in their synergistic effect in comparison to authentic ascorbic acid, with maltosyl-ascorbic acid being the most effective. Volatiles production was highly correlated with the TBARS values in the lipid oxidation of cooked meat. The antioxidative effect preventing the production of volatiles was particularly strong on pentanal, fairly strong on propanal and butanal, and not at all on ethanal. Propanal, pentanal, and the total volatiles thus provided a good representation of the lipid oxidation status of cooked chicken meat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.