Abstract

The activity of carnosine as a natural antioxidant in gamma irradiated ground beef and beef patties was studied. Samples of ground beef, in the absence and presence of 0.5% or 1.0% carnosine, as well as raw and cooked beef patties prepared with 1.5% salt (NaCl), in the absence and presence of 0.5% or 1.0% carnosine, were gamma irradiated at doses of 0, 2, and 4 kGy. The extent of oxidation in irradiated and non-irradiated samples of ground beef and raw beef patties was then determined during refrigerated (4 ± 1 °C) and frozen (−18 °C) storage, while determined for cooked beef patties during refrigerated storage only. Moreover, the determination of metmyoglobin (MetMb) accumulation and sensory evaluation for the visual color were carried out for samples of ground beef and raw patties. The results indicated that salt or salt and cooking accelerated the oxidative processes and significantly increased the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) in the prepared non-irradiated samples. However, salt slowed down the accumulation of MetMb in raw patties. Irradiation treatments and storage in the absence of carnosine significantly ( P < 0.05) increased the PV and TBARS in samples, at higher rates in salted or salted and cooked beef. Moreover, irradiation and storage significantly ( P < 0.05) increased the formation of MetMb in ground beef and raw patties in the absence of carnosine. Addition of carnosine significantly ( P < 0.05) reduced the oxidative processes and MetMb formation (proportionally to the used concentration) in samples post-irradiation and during storage. Furthermore, carnosine exerted significant efficacy in maintaining an acceptable visual red color post-irradiation and during storage of ground beef and raw patties. These results demonstrate that carnosine can be successfully used as a natural antioxidant to increase the oxidative stability in gamma irradiated raw and cooked meat products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.