Abstract

Beta-amyloid (Aβ) is a peptide of 39–42 amino acids that is the primary component of plaques in Alzheimer's disease (AD). The mechanism by which Aβ expresses its neurotoxic effects may involve induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels. Cultured cortical cells were utilized to study the alterations in calcium homeostasis underlying the neurotoxic effect of Aβ. Serum supplement B27 and vitamin E were effective in preventing neuronal death as assessed by lactate dehydrogenase (LDH) release, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and number of apoptotic nuclei. In addition, Aβ-induced cytosolic free calcium ([Ca 2+] i) was blocked by antioxidants vitamin E and U83836E, but not by N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801, or by voltage-gated calcium channel blocker nimodipine. Taken together, the results suggest that NMDA receptor and voltage-gated calcium channels are not involved in Aβ-induced [Ca 2+] i increase. This increase appeared to be the result of extracellular calcium influx by some unknown mechanisms. In addition, antioxidants such as B27 were effective in protecting cultured cortical neurons against Aβ, and correlated with Aβ attenuation of early calcium response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.