Abstract

Animal cells are protected from oxidative damage by an antioxidant network operating as a coordinated system, with strong synergistic interactions. Lifespan studies with whole animals are expensive and laborious, so there has been little investigation of which antioxidant interactions might be useful for life extension. Animals in the phylum Rotifera are particularly promising models for aging studies because they are small (0.1-1 mm), have short, two-week lifespan, display typical patterns of animal aging, and have well characterized, easy to measure phenotypes of aging and senescence. One class of interventions that has consistently produced significant rotifer life extension is antioxidants. Although the mechanism of antioxidant effects on animal aging remains controversial, the ability of some antioxidant supplements to extend rotifer lifespan was unequivocal. We found that exposing rotifers to certain combinations of antioxidant supplements can produce up to about 20% longer lifespan, but that most antioxidants have no effect. We performed life table tests with 20 single antioxidants and none yielded significant rotifer life extension. We tested 60 two-way combinations of selected antioxidants and only seven (12%) produced significant rotifer life extension. None of the 20 three- and four-way antioxidant combinations tested yielded significant rotifer life extension. These observations suggest that dietary exposure of antioxidants can extend rotifer lifespan, but most antioxidants do not. We observed significant rotifer life extension only when antioxidants were paired with trolox, N-acetyl cysteine, L: -carnosine, or EUK-8. This illustrates that antioxidant treatments capable of rotifer life extension are patchily distributed in the parameter space, so large regions must be searched to find them. It furthermore underscores the value of the rotifer model to conduct rapid, facile life table experiments with many treatments, which makes such a search feasible. Although some antioxidants extended rotifer lifespan, they likely did so by another mechanism than direct antioxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.