Abstract

Antioxidant vitamins reduce cardiac oxidative stress and cardiomyocyte apoptosis produced by exogenous norepinephrine (NE) and attenuate cardiac dysfunction in animals with pacing-induced congestive heart failure (CHF). This study was carried out to determine whether the mitogen-activated protein kinase (MAPK) signal transduction pathways are involved in oxidative stress-induced myocyte apoptosis. Rabbits with rapid pacing-induced CHF and sham operation were randomized to receive either a combination of antioxidant vitamins (beta-carotene, ascorbic acid, and alpha-tocopherol), alpha-tocopherol alone, or placebo for 8 wk. Compared with sham-operated animals, CHF animals exhibited increased oxidative stress as evidenced by decreased myocardial reduced-to-oxidized glutathione (GSH/GSSG) ratio (27 +/- 7 vs. 143 +/- 24, P < 0.05), myocyte apoptosis (77 +/- 18 vs. 17 +/- 4 apoptotic nuclei/10,000 cardiomyocytes, P < 0.05), increased total and phosphorylated c-Jun NH2-terminal protein kinase (p-JNK; 1.95 +/- 0.14 vs. 1.04 +/- 0.04 arbitrary units, P < 0.05) and phosphorylated p38 kinase (p-p38), and decreased phosphorylated extracellular signal-regulated kinase (p-ERK). Administration of antioxidant vitamins and alpha-tocopherol attenuated oxidative stress, myocyte apoptosis, and cardiac dysfunction, with reversal of the changes of total JNK, p-JNK, and p-ERK in CHF. Furthermore, because NE infusion produced changes of JNK, p-p38, and p-ERK similar to those in CHF, we conclude that NE may play an important role in the production of oxidative stress, MAPK activation, and myocyte apoptosis in CHF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call