Abstract

The ability of zinc to retard oxidative processes has been recognized for many years. Polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants. Previous study has indicated that PCBs can have deleterious effects, including oxidative stress, on various aspects of reproduction in male rats. The aim of this study was to determine the antioxidant role of zinc in PCB-exposed ventral prostate of albino rats. A group of 20 rats were treated with Aroclor 1254 (2 mg/kg body weight/day, i.p.) for 30 days. After the PCB treatment, 10 rats were treated as PCB control. The remaining 10 rats were given zinc (Zn SO 4) (200 mg/kg body weight/day, p.o.) for 10 days. Ventral prostatic enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) were estimated in all the groups. Hydrogen peroxide (H 2O 2), lipid peroxidation (LPO) and ventral prostatic acid phosphatase (ACP) were also estimated. Serum hormonal profiles such as total tri-iodothyronine (T 3), thyroxine (T 4), thyroid stimulating hormone (TSH), testosterone, and estradiol were estimated. Ventral prostatic androgen and estrogen receptors, ventral prostatic zinc content, and serum zinc concentration were also quantified in all the groups. Antioxidant enzymes such as SOD, CAT, GPx, GST, and ACP were decreased while an increase in H 2O 2 and LPO were observed in PCB-treated animals. Decreased serum total T 3, T 4, testosterone, estradiol and increased TSH were observed in PCB-exposed rats. Ventral prostatic androgen and estrogen receptors were also decreased significantly in PCB-exposed rats. Zinc administration restored to previous levels all parameters except ventral prostatic ACP. These results suggest that PCB induces oxidative stress in rat ventral prostate by decreasing the levels of antioxidant enzymes; the effects could be reversed by the administration of zinc. The adverse effect of PCBs (Aroclor 1254) and zinc on ventral prostate might be due to indirect action through hormonal regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.