Abstract

Background: Salinity and drought are the major abiotic stresses and both can cause osmotic imbalances. Drought stress directly results in osmotic stress whereas salinity problem firstly disrupts the water balance and eventually induces ion toxicity which results in cyto-toxicity, metabolic impairment, nutrient imbalance and finally poor crop growth and yield. The co-ordinated up-regulation or constitutive expression of antioxidative system in plants is the main defense in plant against these stresses and thus the present experiment was undertaken to study the antioxidant responses under drought and salinity stress at seedling stage in ricebean (Bidhan 1). Methods: For studying the effect of iso-osmotic potential of salinity and drought stress solutions of NaCl and PEG 6000 with -0.2 MPa (50mM NaCl and 10% PEG), -0.4 MPa (100 mM NaCl and 12% PEG) and -0.8 MPa (200mM NaCl and 18% PEG) osmotic potential were used. The experiment was done in the laboratory of Department Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia and West Bengal in the year 2017-18 and 2018-19. Result: Under moderate to high intensity of osmotic stresses the leaf proline content decreased. The mild and medium stress treatments induced much higher activity of GPOX and APX in the leaf which then decreased somewhat as the intensity of stress increased. The experiment showed that drought stress was found to produce more drastic effects on seedling growth in ricebean as compared to the salinity stress at iso-osmotic potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.