Abstract

The aim of these experiments was to investigate the radical scavenging properties of three diuretics: indapamide (IND) and its major metabolite, 5-OH indapamide (5-OH IND), compared to a reference diuretic, hydrochlorothiazide (HTZ). Electron Paramagnetic Resonance (EPR) was used to determine the scavenging abilities of these compounds on enzymatically produced superoxide radical anion, with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) used as a spin-trap. These experiments revealed that IND and specially 5-OH IND were effective superoxide radical anion scavengers at 0.2 mg/ml. In the second part of these studies, allophycocyanin was used as an indicator of free radical mediated protein damage. In the assay, 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) was used as a peroxyl radical generator, Trolox (a water-soluble analogue of vitamin E) as a control standard, and the loss of allophycocyanin fluorescence was monitored. The antioxidant effects of the diuretics were expressed in oxygen-radical absorbing capacity (ORAC), where one ORAC unit equals the net protection produced by 1 microM Trolox. HTZ showed no protection up to 100 microM final concentration, whereas IND and 5-OH IND showed linear correlation with respect to concentration when expressed in ORAC units: 5-OH IND induced the highest protection against peroxyl radical. The above observations suggested that IND and 5-OH IND are potent radical scavengers, with the metabolite 5-OH IND having a superior antioxidant potency than IND. By contrast, HTZ had no effect. These radical scavenging properties of 5-OH IND may be of clinical interest for vascular protection and may help to protect the heart from oxidative injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.