Abstract
Antarctic notothenioid fishes possess high oxidative capacities, large amounts of intracellular lipid combined with biological membranes enriched in polyunsaturated fatty acids, all of which could make these animals susceptible to oxidative injury, particularly in the form of lipid peroxidation. The central objective in this study was to examine capacities for oxidative metabolism and total antioxidant defense in Antarctic and non-Antarctic notothenioids in order to test the hypothesis that the cold-bodied Antarctic fishes possess elevated activities of citrate synthase (CS), matched by a more robust antioxidant (AOX) defense, than non-Antarctic species. CS activities and total AOX capacities were measured in brain and heart of 4 Antarctic species and 2 non-Antarctic species collected on the 2004 ICEFISH cruise. While no statistical differences are found among Antarctic and non-Antarctic fishes in either CS or AOX capacities, AOX capacity in both tissues expands with CS activity among individuals measured when all species are combined. There is also a 4.5-fold greater AOX capacity, when normalized to CS activity, in brain than in heart indicating the requirement for extra AOX defense in a tissue well known for its particularly high levels of phospholipids more prone to lipid peroxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.