Abstract

Overproduction of reactive oxygen species (ROS) in cells is a major health concern as it may lead to various diseases through oxidative damage of biomolecules. Commonly used traditional small molecular antioxidants (polyphenols, carotenoids, vitamins, etc.) have inadequate efficacy in lowering excessive levels of ROS due to their poor aqueous solubility and bioavailability. In response to the widespread occurrence of antioxidant polyphenols in various biorenewable resources, we aimed to develop water-soluble antioxidant polymers with side chain phenolic pendants. Four different types of copolymers (P1-P4) containing phenyl rings with different numbers of hydroxy (-OH) substituents (0: phenylalanine, 1: tyrosyl, 2: catechol, or 3: gallol) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization with a desired molar mass (8500-10000 g/mol) and a narrow dispersity (Đ ≤ 1.3). After successful characterizations of P1-P4, their in vitro antioxidant properties were analyzed by different methods, including 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB), and β-carotene (βC) assays. Our results revealed that the gallol pendant polymers can effectively scavenge ROS. Furthermore, electron paramagnetic resonance (EPR) spectroscopy with DPPH• also confirmed the radical quenching ability of the synthesized polymers. The gallol pendant polymers, at a well-tolerated concentration, could effectively penetrate the macrophage cells and restore the H2O2-induced ROS to the basal level. Overall, the present approach demonstrates the efficacy of water-soluble antioxidant polymers with gallol pendants toward the mitigation of cellular oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.