Abstract

The present investigation was carried out to characterize four different types of psyllium seeds including one landrace for their nutritional, structural, antioxidant profile and biological active compounds. DSC analysis showed the highest peak temperature (TP) of 107.57 ºC in RI-89 and end set temperature (TE) of 130.2 ºC for HI-5 cultivar. FT-IR analysis displayed strong absorption bands at frequencies 960, 1380, 1740, 2280 and 3280cm-1. SEM micrographs of each cultivar showed compact and irregular mass of fiber at various magnifications. Protein, fat, ash and total carbohydrate content of psyllium seed flour were recorded up to 13.33, 0.38, 5.0 and 77.88 %, respectively. Ethanol was found to be a suitable solvent than methanol to extract the phytonutrients from psyllium seed flour. DPPH free radical scavenging activity (FRSA) of methanolic and ethanolic extract varied between 31 to 39 % and 38.9 to 43 %, respectively. However, ABTS-FRSA varied between 31.7 to 32.9 % and 33.2 to 34.3 %, for methanolic and ethanolic extract, respectively. Total flavonoids and total phenolic content was recorded up to 2.92 mg RE/g and 4.37 mg GAE/g, in ethanolic extract. The reducing power (RP) and Metal chelating activity (MCA) also varied significantly (p≤0.05) among the cultivars. The MCA ranged from 33.20 to 34.81 % in methanolic extracts and 34.62 to 36.07 % in ethanolic extracts. The lowest absorbance for reducing power was found in methanolic extract of landrace (0.16), whereas, the highest was found in ethanolic extract of RI-89 (0.37). Physico-chemical properties including oil and water absorption capacity of both seed and flour did not vary significantly among the cultivars, whereas significant difference was observed in seed hydration capacity among cultivars evaluated. Among the physical properties, L/W ratio ranged from 1.80 to 199, whereas porosity and angle of repose were of 59.2 to 67.7 % and 23.20 to 27.02º, respectively. Static coefficient of friction was found less using steel (0.484 to 0.667) as a test surface compared to wood (0.679 to 0.744) and plastic (0.536 to 0.560). Bulk density, true density and porosity of various psyllium seed cultivars varied between 0.57 to 0.63 g/cm3 and 1.50 to 1.77 g/cm3 and 58.2 to 67.7%, respectively. Geometric mean diameter (Dg), Arithmetic mean diameter (Da) and surface area of seeds (A) varied from 1.49 to 1.60 mm and 1.68 to 1.79 mm and 5.91 to 6.78 mm2, respectively.

Highlights

  • Plantago ovata belongs to family Plantaginaceae commonly known as Psyllium

  • Husk which is known for its medicinal uses is odourless and tasteless which is removed by mechanical milling from the seed and yields up to 26%

  • Materials and Methods Materials Psyllium seeds cultivar HI-5 was procured from Hissar Agricultural University, Haryana (India), RI-89 and GI-2 cultivars were procured Agriculture University, Jodhpur (India) and Landrace psyllium seeds were kindly provided by local farmer of Jalore, Rajasthan (India)

Read more

Summary

Introduction

Plantago ovata belongs to family Plantaginaceae commonly known as Psyllium. It is an important commercial crop cultivated in India, Pakistan and Iran. The seed of Plantago resembles the ‘horse ear’, from which it got its name isabgol.[1,2] Plantago ovata was originated in West Asia and got introduced to India in the time of Mughal era during the middle ages.[1,3] India is the world’s largest producer (98% of global production) as well as exporter of psyllium husk and the leading psyllium producing states are Gujarat, Madhya Pradesh, Rajasthan and Haryana.[1,2] The psyllium seeds are enclosed with a thin white papery covering on the concave side giving fusion to outer layers of ovule with the inner epidermis forming seed coat or husk. In food psyllium is used as thickening agent, emulsifier,[10] substitute for gluten,[11] and used in edible films.[12]

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.