Abstract

Modification of chitosan (CS) through grafting with caffeic acid (CA, CA-g-CS) and ferulic acid (FA, FA-g-CS) significantly improved its solubility under neutral and alkaline environments. Spherical and physicochemically stable nanocomplexes assembled from the phenolic acid grafting CS and caseinophosphopeptide (CPP) were obtained with particle size <300 nm and zeta potential of <+30 mV. The net polymer nanocomplexes composed with the phenolic acid grafting CS and CPP showed strong antioxidant activity. The encapsulation efficiencies of epigallocatechin-3-gallate (EGCG) in the CA-g-CS-CPP nanocomplexes and FA-g-CS-CPP nanocomplexes were 88.1 ± 6.7 and 90.4 ± 4.2%, respectively. Improved delivery properties of EGCG were achieved after loading with the antioxidant nanocomplexes, including controlling release of EGCG under simulated gastric environments and preventing its degradation under neutral and alkaline environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.