Abstract

The potent antioxidant LY231617 (2,6-bis(1,1-dimethylethyl)-4-[[(1-ethyl)amino]methyl]phenol hydrochloride) is cytoprotective in models of focal and global cerebral ischemia. We tested the hypothesis that administration of LY231617, before the insult, would improve recovery of cerebral electrical activity and metabolic function after transient global cerebral ischemia by improving cerebral blood flow (CBF) during the reperfusion period. Randomized, controlled, prospective study. Research laboratory at a university teaching hospital. Twenty-four male beagle dogs. All experiments were performed under pentobarbital anesthesia and controlled conditions of normoxia, normocarbia, and normothermia. Twelve control dogs received 20 mL/kg saline (vehicle) bolus into the right atrium and 0.01 mL/kg/min i.v., beginning 20 mins before 13 mins of global cerebral ischemia (by aortic occlusion). The dogs in the drug-treated group received LY231617 as a 10-mg/kg bolus 20 mins before ischemia and 5 mg/kg/hr throughout reperfusion (n = 12). CBF was measured using radiolabeled microspheres. Total CBF, cerebral oxygen consumption, and somatosensory evoked potentials (SEP) were measured during 240 mins of reperfusion. CBF was similar in both vehicle- and LY231617-treated animals at baseline and throughout the experimental period. In all animals, SEP became isoelectric between 60 and 100 secs after cross-clamping of the ascending aorta. SEP amplitude recovery was significantly higher in drug-treated animals compared with controls (73%+/-15% vs. 39%+/-14% [mean+/-SEM] from baseline at 120 mins [p<.05] and 86%+/-12% vs. 49%+/-14% from baseline at 240 mins [p< .05]). LY231617 improves recovery of cerebral electrical function after complete transient global ischemia via mechanisms unrelated to cerebral circulatory effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.