Abstract

Detonation of explosives, firing of large caliber weapons and occupational explosions, professional or accidental, produce high-energy impulse noise (blast) waves characterized by a rapid rise in atmospheric pressure (overpressure) followed by gradual decay to ambient level. Exposure to blast waves causes injury, predominantly to the hollow organs such as ears and lungs. We have previously reported that blast exposure can induce free radical-mediated oxidative stress in the lung characterized by antioxidant depletion, lipid peroxidation, and hemoglobin (Hb) oxidation. In this study, we examined whether pre-loading, adequately fed rats, with pharmacological doses of antioxidants would reduce the response to blast. Sprague–Dawley rats weighing 300–350 g were loaded with either 800 IU vitamin E (VE), 1000 mg vitamin C (VC) or 25 mg lipoic acid (LA) for 3 consecutive days by gavage before exposure to blast. Both VE, and LA were dissolved in 2 ml corn oil, but VC in 2 ml water. After the 3-day antioxidant loading, the rats were divided into six groups (five rats per group), deeply anesthetized with sodium pentobarbital (60 mg/kg body weight), then exposed to a low-level blast (62±2 kPa peak pressure and 5 ms duration). A matched number of groups were sham exposed and served as controls. One hour after exposure, all rats were euthanized then blood, and lung tissue was analyzed. We found that antioxidant loading resulted in restored Hb oxygenation, and reduced lipid peroxidation. Lung tissue VE content was elevated after loading but VC did not change possibly due to their different bioavailability and saturation kinetics. These observations, suggest that brief antioxidant loading with pharmacological doses can reduce blast-induced oxidative stress, and may have occupational and clinical implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.