Abstract

Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative damage. The protective role of antioxidant enzymes against NO-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP +-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM S-nitroso- N-acetylpenicillamine (SNAP), the nitric oxide donor, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2′-deoxyguanosine, were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2′7′-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in inhibitor-treated U937 cells upon exposure to NO. Upon exposure to 0.2 mM SNAP, which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated U937 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against NO-induced cell death including necrosis and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call