Abstract

The antioxidant potential of albumin-bound sulfur (SBA) was investigated in rat liver microsomes using lipid peroxidation systems in vitro. Sulfur bound to protein is a reduced metabolite which is produced from cystine by gamma-cystathionase. Lipid peroxidation was induced either chemically by ferrous ions and ascorbate or enzymatically by carbon tetrachloride or tert-butyl hydroperoxide as indicated by the increase in thiobarbituric acid reactive substances (TBA-RS) and oxygen consumption. Although the antioxidant effect of SBA was weak on the non-enzymatic lipid peroxidation system, the addition of SBA significantly inhibited TBS-RS formation and oxygen consumption compared with non-treated bovine serum alubumin (BSA) in a microsomal lipid peroxidation system induced enzymatically. The sulfur bound to albumin disappeared during incubation with liver microsomes. However, slight differences in the disappearance were observed depending on whether or not lipid peroxidation was induced in the enzymatic systems. In the CCl4-induced lipid peroxidation system, the cytochrome P-450 level was significantly decreased by the addition of SBA. Therefore, in cytochrome P-450 dependent lipid peroxidation system, the potential effects of sulfur bound to albumin are due to an inhibition of cytochrome P-450 rather than by the oxidation itself caused by radical trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call