Abstract
Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p < 0.05) improved oxidative stability of patties by 20%–30% (spinach < yellow pea < onion < red pepper < green pea < tomato). Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01). However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01) contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake.
Highlights
The oxidation of lipids and proteins is a major concern for the food industry
Susceptibility of foods to oxidation depends in part on the degree of unsaturation of the fatty acids present
In addition to the fatty acid composition, inhibition of oxidation of food lipids is dependent on the presence of phenolic compounds with antioxidant activity
Summary
The oxidation of lipids and proteins is a major concern for the food industry. Oxidation promotes rancidity, decreases product shelf life and imparts negative changes in flavour, texture and colour, which adversely affect consumer acceptability [1]. Many end products of the lipid oxidation process are potentially detrimental to health, contributing to disease pathogenesis by direct effects on cellular and genomic stability or modulating major pathways of cell signalling and gene expression [2,3]. Aldehydes, such as malondialdehyde, which are derived primarily from the oxidation of n-3 and n-6 polyunsaturated fatty acids, are atherogenic and putative mutagens and carcinogens [4,5,6]. Such phenolic structures may chelate reactive iron [9] and confer multiple reductive capacities [10], donating hydrogens or electrons to inhibit the initiation and propagation of lipid oxidation [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.