Abstract
Abstract In the present study, we coated cotton fabrics with protein-based nanoparticles containing vitamin E (α-tocopherol) by the pad-cure method. Scanning electron microscopy, Fourier transform infra-red spectroscopy, and air permeability analysis of coated samples confirmed the fixation of the nanoparticles onto the fabric’s surface. The antioxidant activity of the coated fabrics was evaluated by 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals reduction. Samples coated with nanoparticles containing the highest amount of encapsulated vitamin E (20% of the oil phase) showed the highest antioxidant activity. The protein-based coating was maintained for at least 10 washing cycles, demonstrating the reliability of the pad-cure method for the fixation of nanoparticles onto cotton surfaces. A methodology for nanoparticles release from the coated surfaces and their transfer to other substrates was demonstrated by the simple crock meter rubbing in the presence of sweat and protease. A high amount of material can be transferred and released to other substrates, such as textiles and skin, through the synergistic effect of sweat/protease and abrasion. An array of cosmetic and medical applications are possible with the developed coating and release methodology in which vitamin E would impart vital benefits as skin protection, anti-ageing product, or skin moisturizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.