Abstract

BackgroundUltraviolet (UV) irradiation disrupts skin through several deleterious actions, such as induction of reactive oxygen species (ROS), DNA damage, and collagen degradation. Cinnamaldehyde (CIN) is a major constituent of the cinnamon and it possesses potent antioxidative activity; however, it is unclear whether CIN is capable of inhibiting the adverse effects of UVB. ObjectiveTo investigate protective effects of CIN against UVB-induced photodamage. MethodsHaCaT keratinocytes were pretreated with CIN, irradiated with UVB, and assessed for the ROS production by flow cytometry and for the DNA damage by ELISA. As in vivo mouse model, Hos:HR-1 hairless mice were treated with ointments containing DMSO or CIN and irradiated multiple times with UVB. After 10 weeks of irradiation, wrinkle formation, epidermal thickness, infiltrating cell number, malondialdehyde amount, collagen amount, MAP kinase signaling, and related gene expressions (Hmox1, Col1a1, Mmp1a, and Mmp13) were analyzed. ResultsCIN significantly reduced the ROS production and accelerated the repair of DNA damage pyrimidine(6-4)pyrimidone photoproducts in UVB-irradiated human keratinocytes in vitro. In the mouse model, topical application of CIN significantly inhibited wrinkle formation, epidermal hyperplasia, and dermal inflammatory cell infiltration. The antioxidative process was significantly promoted in the CIN-applied site, as evidenced by upregulation of the antioxidative enzyme Hmox1 as well as the reduced accumulation of malondialdehyde. In addition, topical application of CIN normalized the UVB-induced collagen/Col1a1 downregulation and the UVB-induced Mmp13 upregulation, implying the prevention of UVB-induced collagen degradation. ConclusionsCIN and CIN-containing herbal agents may exert potent protective effects against UVB exposure on skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.