Abstract

Reactive oxygen species (ROS), such as hydroxyl and superoxide anion radicals, are highly reactive molecules derived from the metabolism of oxygen. ROS play positive roles in cell physiology, but they may also damage cell membranes and DNA, inducing oxidation that causes membrane lipid peroxidation and decreases membrane fluidity. Soymilk yogurt, which is soymilk fermented using lactic acid bacteria (LAB), is an excellent food item with numerous functional substances with antioxidant effects. In this study, the antioxidative activities of soymilk yogurt were investigated. Sixteen of the 26 tested LAB strains solidified soymilk. In antioxidant capacity tests for bacterial cells, Leuconostoc mesenteroides MYU 60 and Pediococcus pentosaceus MYU 759 showed the highest values in the oxygen radical antioxidant capacity (ORAC) and hydroxyl radical antioxidant capacity (HORAC) tests, respectively. The supernatant of soymilk yogurt made with Lactobacillus gasseri MYU 1 showed the highest ORAC and HORAC values. L. mesenteroides MYU 60, Lactobacillus plantarum MYU 74, Lactobacillus reuteri MYU 220, and P. pentosaceus MYU 759 showed significantly high N-acetylcysteine equivalent values compared with the control in a total ROS reducing assay (p<0.05). These strains were selected, and a comet assay was performed, which exhibited decreased values in all selected strains compared with the control, indicating DNA protection. An acidic exopolysaccharide produced by P. pentosaceus MYU 759 showed high antioxidant capacity. The antioxidant substances produced by LAB fermentation may be exopolysaccharides, antioxidant peptides, and isoflavone aglycones. Soymilk yogurt can be used as a functional food useful for various diseases related to oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.