Abstract

Aloe vera is a multifunctional plant that has gained acceptance as an excellent home remedy source in Asia and the world. The present study was intended to evaluate the phytochemical contents and in vitro antioxidant, antimicrobial, antileishmanial, and protein kinase inhibition activities in different fractions of A. vera leaf. Methanolic extract of A. vera leaves was fractionated using column chromatography and ten fractions (AV1-AV10) were obtained. Phenolics composition, antioxidant, antimicrobial, antileishmanial, and protein kinase inhibition activities were evaluated using standard protocols. Well-known compounds of A. vera were used for in silico study against enzymes involved in brine shrimp and antileishmanial and hyphae formation inhibition assay on the basis of results. Five fractions (AV3 to AV7) possess potential total phenolics and flavonoids contents along with significant biological activities. AV4 fraction exhibited the highest total phenolics content 332.4 ± 32.6μg GAE/mg and total antioxidant activity 150.4 ± 25.815μg AAE/mg determined by phosphomolybdenum complex assay. Fraction AV6 showed 95% antileishmanial effect as well as the lowest LD50 value of 0.5305μg/mL in brine shrimp lethality assay. The Protein Kinase inhibition potential in A. vera leaves was determined for the first time and three fractions AV1, AV6, and AV7 depicted activity with the highest zone of inhibition up to 21±0.5mm (AV7). Docking analysis showed that A. vera contains anthraquinones, anthrones, chromones, and polysaccharides responsible for synergistic cytotoxic, antileishmanial, antibacterial, and antioxidant potential of this plant. Therefore, with more studies, A. vera could probably have the potential to be used for drug development against leishmaniasis.

Highlights

  • The history of development of medicinal components is based on the fact that over the centuries the natural products such as taxol, artemisinin, and morphine were used to cure a number of diseases [1]

  • The pharmacological and physiological potentials of phenolic compounds depend on their free radical scavenging and antioxidant activities and properties to maintain the activity of enzymes responsible for BioMed Research International detoxification [7]

  • Some of the well-known secondary metabolites of A. vera plant belonging to anthraquinone, resins, anthracenes, and polysaccharide class were used for in silico study against enzymes involved in hyphae formation of Streptomyces, hatching of Artemia salina larvae, and growth of leishmanial parasite

Read more

Summary

Introduction

The history of development of medicinal components is based on the fact that over the centuries the natural products such as taxol, artemisinin, and morphine were used to cure a number of diseases [1]. Aloe vera showed pharmacological activities including antioxidant, antimicrobial, antitumor, hypoglycemic, hypolipidemic, and antidiabetic ones [25]. These properties are mainly contributed by inner gel of the leaves and presence of more than 200 different biologically active substances [24]. The medicinal and pharmacological potential of A. vera revealed that it is quite auspicious as a versatile therapeutic plant and should be further investigated. In this context, the present study was designed to evaluate total phenolics content, in vitro antioxidant and antimicrobial properties, cytotoxicity, and protein kinase inhibition activity in various fractions of Aloe vera leaf extract. Some of the well-known secondary metabolites of A. vera plant belonging to anthraquinone, resins, anthracenes, and polysaccharide class were used for in silico study against enzymes involved in hyphae formation of Streptomyces, hatching of Artemia salina larvae, and growth of leishmanial parasite

Materials and Methods
Results and Discussion
A10mDpMhoStOericin B
Molecular Docking Study
Conclusion
Conflicts of Interest

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.