Abstract

Secondary metabolites (SMs) are the primary source of therapeutics and lead chemicals in medicine. They have been especially important in the creation of effective cures for conditions such as cancer, malaria, bacterial and fungal infections, neurological and cardiovascular problems, and autoimmune illnesses. In the present study, Aspergillus pseudodeflectus AUMC 15761 was demonstrated to use wheat bran in solid state fermentation (SSF) at optimum conditions (pH 7.0 at 30 °C after 10 days of incubation and using sodium nitrate as a nitrogen source) to produce methyl ferulate and oleic acid with significant antioxidant and antibacterial properties. Gas chromatography-mass spectrometry (GC–MS) analysis of the crude methanol extract revealed eleven peaks that indicated the most common chemical components. Purification of methyl ferulate and oleic acid was carried out by column chromatography, and both compounds were identified by in-depth spectroscopic analysis, including 1D and 2D NMR and HR-ESI–MS. DPPH activity increased as the sample concentration increased. IC50 values of both compounds obtained were 73.213 ± 11.20 and 104.178 ± 9.53 µM, respectively. Also, the MIC value for methyl ferulate against Bacillus subtilis and Staphylococcus aureus was 0.31 mg/mL, while the corresponding MIC values for oleic acid were 1.25 mg/mL and 0.62 mg/mL for both bacterial strains, respectively. Molecular modeling calculations were carried out to reveal the binding mode of methyl ferulate and oleic acid within the binding site of the crucial proteins of Staphylococcus aureus. The docking results were found to be well correlated with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.