Abstract
Background: As the most abundant coffee by-product, cascara pulp has been considered a good source of antioxidants which could be used to prevent photoaging. The aim of this study was to determine the phytometabolite profiles, antioxidant and photoaging properties of the ethanolic extract of Coffea arabica cascara pulp. Methods: Ethanolic maceration was performed on the fine powder of C. arabica cascara pulp collected from Gayo Highland, Aceh Province, Indonesia. The filtrate obtained was evaluated for its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, total phenolic content (TPC), and total flavonoid content (TFC). The phytometabolite profiling was conducted qualitatively using reagents and quantitatively using gas chromatography-mass spectroscopy (GC-MS). The potential of the cascara pulp phytometabolites in inhibiting activator protein-1 (AP-1) was evaluated through molecular docking. Results: The extract had TPC and TFC of 2.04 mg gallic acid equivalent/g extract and 91.81 mg quercetin equivalent/g extract, respectively. The half-maximal inhibitory concentration (IC 50) for the DPPH inhibition reached as low as 9.59 mg/L. Qualitative phytocompound screening revealed the presence of alkaloids, saponins, tannins, flavonoids, steroids, quinones, polyphenols, and triterpenoids. GC-MS revealed the extract containing 5-hydroxy-methylfurfural (22.31%); 2,5-dimethyl-4-hydroxy-3(2H)-furanone (0.74%); and caffeine (21.07%), which could form interaction with AP-1 with binding energies of -172.8, -150.8, and -63.188 kJ/mol, respectively. Conclusion: Ethanolic extract from C. arabica cascara pulp potentially have anti-photoaging properties which is worthy for further investigations in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.