Abstract

This study is aimed at identifying the bioactive components in lotus leaf flavonoid extract (LLFE) and analyzing the antioxidant and anti-inflammatory activities of LLFE in vitro and in vivo. The flavonoids in LLFE were determined by UHPLC-MS/MS. The effect of LLFE on damaged 293T cells (H2O2, 0.3 mmol/L) was determined by MTT assay, and the activity of antioxidant enzymes was measured by kits. We studied the antioxidant and anti-inflammatory effects of LLFE on D-Gal/LPS (30 mg/kg·bw and 3 μg/kg·bw)-induced aging mice. We also evaluated the main organ index, pathological changes in the liver, lung, and kidney, liver function index, biochemical index, cytokine level, and mRNA expression level in serum and liver. The results showed that LLFE contains baicalein, kaempferol, kaempferid, quercetin, isorhamnetin, hyperoside, lespenephryl, and rutin. LLFE reduced the oxidative damage sustained by 293T cells, increased the levels of SOD, CAT, GSH, and GSH-Px, and decreased the level of MDA. The animal studies revealed that LLFE reduced oxidative damage and inflammation in injured mice, inhibited increases in AST, ALT, MDA, and NO, increased SOD, CAT, GSH, and GSH-Px levels, upregulated anti-inflammatory cytokines IL-10 and IL-12, and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and IFN-γ. Furthermore, the expression of antioxidant- and anti-inflammatory-related mRNA was consistent with the above results.

Highlights

  • Homeostasis exists between prooxidation and antioxidation in the human body, but this balance is not stable and eventually induces oxidative stress due to various factors [1]

  • Twenty grams of dried lotus leaves was crushed, 100 mL of 70% ethanol was added according to the ratio of lotus leaf to ethanol (1 : 10 (m : v)), and the solution was incubated for 3 h in a 60°C water bath

  • Eight flavonoids were identified from lotus leaf flavonoid extract (LLFE) (Figure 2 and Table 6)

Read more

Summary

Introduction

Homeostasis exists between prooxidation and antioxidation in the human body, but this balance is not stable and eventually induces oxidative stress due to various factors [1]. Oxidative stress occurs when there is an accumulation of high levels of reactive oxygen species (ROS). Biological components such as DNA, protein, and lipids in the human body are oxidized and modified by reactive oxygen free radicals or combined with other forms of free radicals or cross-linked, and these changes can induce cardiovascular disease, neurodegeneration, inflammatory disease, or cancer [2]. Hydrogen peroxide (H2O2) is an important ROS that is produced in almost all oxidative stress states. It penetrates cell membranes and reacts with intracellular Fe2+ through the Fenton reaction to effectively oxidize a variety of organic

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.