Abstract
Objective: Swertia chirata has been used in traditional and folklore medicine to treat several ailments such as hepatic disorders. However, the mechanistic and experimental justification to its traditional use is lacking. The present study was aimed to investigate the hepatoprotective potential of S. chirata during hypoxia (HYP)-induced hepatic damage in Wistar rats and to determine the underlying mechanism.Methods: Hydroalcoholic extract of S. chirata was prepared using Soxhlet extraction. Animals were divided into six groups (n=5). Animals in the HYP groups were subjected to HYP for 3 days (10% O2) to induce oxidative stress and hepatic damage. 50 and 100 mg/kg extract treatments were provided orally once daily for 7 days after which animals were sacrificed, and biochemical investigations for oxidative stress, liver function tests, and hepatic histopathology were performed.Results: HYP-induced marked oxidative stress as indicated by the significantly elevated mitochondrial ROS generation, lipid peroxidation, glutathione, and depleted catalase levels. Liver function test indicated hepatic damage as the levels of serum glutamic-oxaloacetic transaminase, serum glutamic pyruvic transaminase, and aspartate transaminase were significantly elevated in HYP animals. S. chirata treatment alleviated oxidative stress and improved liver functions in a dose-dependent manner. Liver histopathology confirmed the marked hepatic damage induced by HYP and revealed that S. chirata efficiently rescued liver from hypoxic damage.Conclusion: Hydroalcoholic extract of S. chirata is a potent hepatoprotective intervention which was associated with its potential to alleviate oxidative stress and improve liver functions. Moreover, it could find clinical application as a safer and alternative remedy for liver ailments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Asian Journal of Pharmaceutical and Clinical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.