Abstract

Background: Histamine H2 receptor antagonists are a group of drugs that inhibit gastric juice secretion in gastrointestinal diseases. However, there is evidence to suggest that H2 blockers have a broader spectrum of activity. The antioxidant properties of H2 blockers have not been fully elucidated, and their anti-glycation potential has not been studied to date. Therefore, this is the first study to compare the antioxidant and antiglycation potentials of the most popular H2 antagonists (ranitidine, cimetidine, and famotidine) on protein glycoxidation in vitro. Methods: Bovine serum albumin (BSA) was glycated using sugars (glucose, fructose, galactose, and ribose) as well as aldehydes (glyoxal and methylglyoxal). Results: In the analyzed group of drugs, ranitidine was the only H2 blocker that significantly inhibited BSA glycation in all tested models. The contents of protein carbonyls, protein glycoxidation products (↓dityrosine, ↓N-formylkynurenine), and early (↓Amadori products) and late-stage (↓AGEs) protein glycation products decreased in samples of glycated BSA with the addition of ranitidine relative to BSA with the addition of the glycating agents. The anti-glycation potential of ranitidine was comparable to those of aminoguanidine and Trolox. In the molecular docking analysis, ranitidine was characterized by the lowest binding energy for BSA sites and could compete with protein amino groups for the addition of carbonyl groups. H2 blockers also scavenge free radicals. The strongest antioxidant properties are found in ranitidine, which additionally has the ability to bind transition metal ions. The systematic literature review also revealed that the anti-glycation effects of ranitidine could be attributed to its antioxidant properties. Conclusions: Ranitidine showed anti-glycation and antioxidant properties. Further research is needed, particularly in patients with diseases that promote protein glycation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.