Abstract
Background: Lead (Pb) is a hazardous environmental and industrial pollutant, which induces hepatotoxicity in both humans and animals. Lead acetate can cause the formation of an oxidative stress, resulting in the increase in the concentration of free radicals and decrease in antioxidant. Chitosan-Pinus merkusii extract nanoparticle has shown to possess powerful antioxidant properties. Objective: In the present study, we investigated the impact of Chitosan-P. merkusii extract nanoparticle against lead acetate-induced hepatotoxicity in rats. Materials and Methods: Chitosan-P. merkusii extract nanoparticle was characterized by dynamic light scattering (DLS) and scanning electron microscope (SEM). The fifty male rats were divided into control group (rats were given daily with distilled water), lead acetate group (rats were injected with lead acetate [15 mg/Kg BW i. p] for the 7 consecutive days), and the treatment group (rats were given the Chitosan-P. merkusii extract nanoparticle [100 mg, 200 mg, and 400 mg/Kg BW orally] once in a day for 11 days and on the 4th day, they were injected with lead acetate [15 mg/Kg BW i. p] for 7 days). On day 11, the rats' blood samples were taken by a cardiac puncture to measure the levels of serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), and alkaline phosphatase (ALP). Furthermore, rats were sacrificed, and liver tissues were collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The liver tissues also were subjected to histological evaluations and immunohistochemical evaluations of the expressions of caspase-3. Results: The results showed that DLS showed the formation of Chitosan-P. merkusii extract nanoparticle with the size of 530.2 ± 30.27 nm. SEM images of the Chitosan-P. merkusii extract nanoparticles showed an irregular shape, and the morphology surface showed the rough surface. Injection of lead acetate (15 mg/Kg BW) for 7 days resulted in a significant (P Abbreviations used: DLS: Dynamic light scattering; SEM: Scanning electron microscope; SGOT: Serum glutamic-oxaloacetic transaminase; SGPT: Serum glutamic-pyruvic transaminase; ALP: Alkaline phosphatase; MDA: Malondialdehyde; SOD: Superoxide dismutase; GPx: Glutathione peroxidase; ROS: Reactive oxygen species; CAT: Catalase; BW: Body weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.