Abstract

The purpose of this study is to investigate the effect of Agrimonia pilosa Ledeb. extract (APLE) on lipopolysaccharide- (LPS-) induced cell damage in hepatocytes with a focus on antioxidant and anti-inflammatory activities. Total antioxidant and anti-inflammatory activities of APLE itself were analyzed and phytochemical analysis was performed. Moreover, inhibitory effects of APLE on LPS-induced oxidative stress and inflammation were assessed in human HepG2 hepatocytes. APLE was found to exert α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and nitrite scavenging activities and reducing power in a dose-dependent manner. The total phenolic and flavonoid contents of APLE were 44.30 ± 1.61 mg GAE/g and 29.65 ± 1.81 mg QE/g, respectively. HPLC analysis revealed that gallic acid is the major phenolic compound in APLE, followed by rutin, genistein, taxifolin, quercetin, luteolin, and apigenin, in descending order. Treatment of 100 and 200 μg/mL APLE significantly reduced LPS-stimulated intracellular reactive oxygen species production to the basal level without any cytotoxicity. Oppositely, APLE reversed LPS-suppressed expression of glutathione peroxidase gene and protein. Consistent with this result, APLE suppressed LPS-triggered expression of proinflammatory cytokine genes in a dose-dependent manner. These results reinforce the fact that the antioxidant and anti-inflammatory activity of APLE helps protect hepatocytes from LPS. Thus, APLE may be utilized as a bioactive ingredient in functional foods.

Highlights

  • Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of the Gram-negative bacterial cell wall, is an endotoxin that causes hepatic damage and liver failure [1, 2]

  • After 24 h of HepG2 cells treatment with 0, 100, 200, and 400 μg/mL of Agrimonia pilosa Ledeb. extract (APLE) together with 0 and 100 ng/mL LPS, cells were incubated with phosphate-buffered saline (PBS) containing 120 μM dichlorofluorescein diacetate (DCFDA) for 60 min at 37°C. e absorbance was determined at 488 nm excitation and 525 nm emission using a fluorescence plate reader (VICTOR X3, PerkinElmer, Turku, Singapore)

  • In order to determine antioxidant activity of APLE, the free radical scavenging activity of APLE ranging from 50 to 800 μg/mL was determined using α,α-diphenyl-β-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals. e DPPH and ABTS radical scavenging activities were increased as the concentration of APLE increased

Read more

Summary

Introduction

Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of the Gram-negative bacterial cell wall, is an endotoxin that causes hepatic damage and liver failure [1, 2]. Taurine administration in rats has been demonstrated to protect LPS-stimulated liver injury through antioxidant and anti-inflammatory activity [14]. Even though a single antioxidant is able to protect the liver from hepatotoxicity caused by LPS, there is an increasing interest in finding natural bioactive compounds with an ability to reduce liver damage due to their superior efficacy. Administration of argan oil to mice injected with LPS attenuated the oxidative stress and inflammation in the liver, as demonstrated by the improved activities of antioxidant enzymes such as Gpx, catalase, and SOD and reduced the expression of proinflammatory cytokines such as TNF-α and IL-6 [18]. Us, this study focused on determining the antioxidant and anti-inflammatory activities of APL and its bioactive compounds as well as the in vitro effect of APLE on oxidative stress and inflammation, the known pathogenic causes of hepatotoxicity Even though multiple biological functions of APL have been previously reported, the effect of APL on LPS-induced cellular damage in hepatocytes had not yet been investigated. us, this study focused on determining the antioxidant and anti-inflammatory activities of APL and its bioactive compounds as well as the in vitro effect of APLE on oxidative stress and inflammation, the known pathogenic causes of hepatotoxicity

Materials and Methods
Determination of Total Antioxidant Capacity of APLE
Determination of Total Antioxidant Compounds
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.