Abstract

BackgroundExcessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Studies have found that lactic acid bacteria (LAB) have antioxidant and anti-aging effects, and are important resources for the development of microbial antioxidants. This paper was to explore the potential role of an antioxidant strain, Lactobacillus plantarum NJAU-01 screened from traditional dry-cured meat product Jinhua Ham in regulating D-galactose-induced subacute senescence of mice. A total of 48 specific pathogen free Kun Ming mice (SPF KM mice) were randomly allocated into 6 groups: control group with sterile saline injection, aging group with subcutaneously injection of D-galactose, treatments groups with injection of D-galactose and intragastric administration of 107, 108, and 109 CFU/mL L. plantarum NJAU-01, and positive control group with injection of D-galactose and intragastric administration of 1 mg/mL Vitamin C.ResultsThe results showed that the treatment group of L. plantarum NJAU-01 at 109 CFU/mL showed higher total antioxidant capacity (T-AOC) and the antioxidant enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) than those of the other groups in serum, heart and liver. In contrast, the content of the oxidative stress marker malondialdehyde (MDA) showed lower levels than the other groups (P < 0.05). The antioxidant capacity was improved with the supplement of the increasing concentration of L. plantarum NJAU-01.ConclusionsThus, this study demonstrates that L. plantarum NJAU-01 can alleviate oxidative stress by increasing the activities of enzymes involved in oxidation resistance and decreasing level of lipid oxidation in mice.

Highlights

  • Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases

  • No significant difference was observed in kidney index, liver index and lung index between the L. plantarum NJAU-01 treatment groups and the normal group, the positive group and the aging model group (P > 0.05)

  • The current study found that mice with D-galactose-induced oxidative stress had significantly reduced MDA levels in serum, heart and liver by injecting with L. plantarum NJAU-01 indicating that L. plantarum may effectively reduce the formation of lipid peroxide in mice

Read more

Summary

Introduction

Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Ascorbic acid consumes oxygen through self-oxidation, reducing metal ions to lower the oxidation-reduction potential and being involved in antioxidant defense [7]. Catalase (CAT) participates in cellular antioxidant defense by decomposing hydrogen peroxide, thereby preventing the Fenton reaction from producing hydroxyl free radicals [9]. Superfluous ROS would lead to oxidative damage caused by many factors like irradiation (X-rays, γ-rays, ultraviolet), chemical reagents (metal ions, HONOO, HOCl, and HOBr), drug and their metabolites, and even smoking. These natural antioxidant systems in the body are often insufficient to prevent oxidative damage, requiring antioxidants supplements such as astaxanthin and folic acid [10]. The search for available approach that can alleviate or inhibit cellular oxidative damage has received considerable attention

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.