Abstract

The antioxidant effect of dihydrolipoate and lipoate was examined in microsomal fractions obtained from normal and α-tocopherol-deficient animals after initiation of lipid peroxidation with an NADPH/iron/ADP system. Dihydrolipoate prolonged the lag phase before the onset of low-level chemiluminescence and before the rapid accumulation of thiobarbituric acid-reactive substances in normal but not in vitamin E-deficient microsomes. Lipoate did not show such an antioxidant effect. It is concluded that the dihydrolipoate-mediated protection against lipid peroxidation by prolonging the lag phase is dependent on α-tocopherol. Likewise, dihydrolipoate prolonged the lag phase before the onset of the rapid loss of vitamin E during lipid peroxidation. Dihydrolipoate, like other biological thiols such as GSH, also affects the peroxidative process after the lag period. The effects included a smaller slope of the chemiluminescence increase, a lower maximal level of chemiluminescence, a slower loss of α-tocopherol and a slower accumulation, but unchanged maximal levels, of thiobarbituric acid-reactive substances. The biological significance may be most prominent in the mitochondrial matrix space, where lipoamide-containing ketoacid dehydrogenases are located. A potential pharmacological use of this biological dithiol in conditions associated with oxidative stress could be based on the antioxidant activity of dihydrolipoate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call