Abstract

Antioxidant activity and phenolic content in sweetpotato root and leaf tissues were quantified at different developmental stages. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical method was used to measure antioxidant activity and total phenolic content was quantified by spectrophotometry using Folin-Denis reagent. Individual phenolic acids were quantified using reversed phase high performance liquid chromatography. Antioxidant activity and phenolic content decreased with root development and leaf maturity. Roots at the initial stages of development (about 4 g root weight) had a higher antioxidant activity and phenolic content compared to fully developed roots. Phenolic content in fully developed roots was significantly higher in the cortex tissue than internal pith tissue. The highest total phenolic content and antioxidant activity was found in cortex tissue at the initial stage of development (10.3 mg chlorogenic acid eq/g dry tissue weight and 9.7 mg Trolox eq/gdry tissue weight, respectively). Sweetpotato leaves had a significantly higher phenolic content and antioxidant activity than roots. Immature unfolded leaves had the highest total phenolic content (88.5 mg chlorogenic acid eq/g dry tissue weight) and antioxidant activity (99.6 mg Trolox eq/g dry tissue weight). Chlorogenic acid was the major phenolic acid in root and leaf tissues with the exception of young immature leaves in which the predominant phenolic acid was 3,5-dicaffeoylquinic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call