Abstract

Alginate/lignin is a synthetic polymer rich in biological activity and is of great interest. Alginate is extracted from seaweed and lignin is extracted from corn stalks and leaves. In this paper, antioxidant activities of alginate/lignin were evaluated, such as total antioxidant activity, reducing power activity, DPPH free radical scavenging activity, and α-glucosidase inhibition activity. Anticancer activity was evaluated in three cell lines (Hep G2, MCF-7, and NCI H460) and fibroblast. Physico-chemistry characteristics of alginate/lignin were determined through FTIR, DSC, SEM_EDS, SEM_EDS mapping, XRD, XRF, and 1H-NMR. The acute toxicity of alginate/lignin was studied on Swiss albino mice. The results demonstrated that alginate/lignin possessed antioxidant activity, such as the total antioxidant activity, and reducing power activity, especially the α-glucosidase inhibition activity, and had no free radical scavenging activity. Alginate/lignin was not typical in cancer cell lines. Alginate/lignin existed in a thermally stable and regular spherical shape in the investigated thermal region. Six metals, three non-metals, and nineteen oxides were detected in alginate/lignin. Some specific functional groups of alginate and lignin did not exist in alginate/lignin crystal. Elements, such as C, O, Na, and S were popular in the alginate/lignin structure. LD0 and LD100 of alginate/lignin in mice were 3.91 g/kg and 9.77 g/kg, respectively. Alginate/lignin has potential for applications in pharmaceutical materials, functional foods, and supporting diabetes treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.