Abstract

Ovarian cancer ranks seventh in the most common malignant tumors in females and seriously threatens women's reproductive health. Natural sources may lead to basic research on potential bioactive components as lead compounds in drug discovery and, ultimately, therapeutic treatments for ovarian cancer and other diseases. Alzheimer's disease (AD) and ovarian cancer are complex diseases of aging that impose an enormous public health burden worldwide. Additionally, people with AD have low levels of acetylcholine in their brains. Enzymes called cholinesterases break down acetylcholine in the brain. If their action is inhibited, more acetylcholine is available for communication among brain cells. In this study, pregnanolone, diethylstilbestrol (DES), flavokawain C, and methyl 3,4,5-trihydroxybenzoate molecules obtained excellent-to-good inhibitory against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes with IC50 values ranging between 77.18±8.62 to 461.35±28.54μM for AChE and 23.86±4.07 to 306.62±32.46μM for BuChE. The calculations revealed the probable interactions and their characteristics at an atomic level. Indeed, the docking scores of DES, flavokawain C, pregnanolone, and methyl 3,4,5-trihydroxybenzoate for AChE are -6.685, -6.247, -6.672, and -5.183(kcal/mol), respectively. This value for the compounds against BuChE is -6.042, -8.851, -5.655, and -5.898(kcal/mol), respectively. Additionally, these compounds significantly decreased ovarian cancer cell viability. Additionally, 100μM dose of all molecules caused good reductions in ovarian cancer cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call