Abstract

Previous studies have suggested a role for both CB1 and CB2 cannabinoid receptors in modulation of nociception. To further examine the role of CB1 and CB2 receptors in antinociception, we evaluated the efficacy of the non-selective cannabinoid receptor agonist, CP 55,940, in models of acute, inflammatory, and neuropathic pain in control mice, CB1 receptor knockout mice, and CB2 receptor knockout mice. In control C57BL/6 mice, administration of CP 55,940 (0.03–0.3 mg/kg, i.p.) reversed complete Freund's adjuvant-induced tactile allodynia, reversed tactile allodynia in the spinal nerve ligation model and inhibited the noxious heat-evoked tail withdrawal response. In addition to its antinociceptive effects, CP 55,940 produced an impairment of motor coordination in the rotarod test. The antinociceptive effects produced by CP 55,940 and associated motor deficits were found to be completely abolished in CB1 receptor knockout mice. In contrast, the antinociceptive effects of CP 55,940 in all pain models were fully retained in CB2 receptor knockout mice, along with the associated motor deficits. The results suggest that the antinociceptive effects of CP 55,940 in models of acute and persistent pain, along with the associated motor deficits, are mediated by CB1 receptors, and likely not CB2 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call