Abstract

Inhibition of spinal glutamate receptors induces antinociceptive effects in numerous animal models of pain. The present study compares the effects of intrathecally administered N-methyl- d-aspartate (NMDA) and non-NMDA glutamate receptor antagonists on nociceptive responses in the tail flick test. Potency of antagonists at NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors was first measured by electrical assays in Xenopus oocytes expressing rat cerebral cortex poly(A) + RNA. Subsequently, Swiss Webster mice were injected intrathecally with the antagonists and tested for antinociception. The drugs tested were: NBQX and GYKI-52466, selective AMPA receptor antagonists, ketamine, MK-801, R(+) HA-966 and ACEA-0762, selective NMDA receptor antagonists, and ACEA-1031, ACEA-1328 and ACEA-0593, NMDA receptor antagonists that also show inhibition of non-NMDA receptors. Selective NMDA receptor antagonists induced essentially no antinociceptive effects in the tail flick test. Antinociceptive activity generally correlated with inhibition of AMPA receptors. The exception was the non-competitive AMPA receptor antagonist GYKI-52466, which was unexpectedly weak. This may be due to inadequate dosing, because the compound has limited solubility, or may be due to differences in the non-NMDA receptor subtype-selectivity profile of GYKI-52466 as compared to competitive antagonists such as NBQX. Overall, our results suggest that inhibition of spinal non-NMDA receptors is the primary, and necessary, mechanism of antinociception by these drugs in the tail flick test in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call