Abstract

The antinociceptive effects of interleukin (IL)-4, -10, and -13 were investigated in two different experimental pain models. Our results showed that pretreatment (30 min) with IL-4 (1-5 ng/animal), IL-10 (0.4-10 ng/animal), or IL-13 (0.4-2.5 ng/animal) inhibited the writhing response induced by the i.p. administration of acetic acid (53-89%) or zymosan (63-74%) in mice, and the knee joint incapacitation induced by i.a. injection of zymosan (49-66%) in rats. Neither of the cytokines affected the pain elicited in mice using the hot-plate test. This analgesic effect of IL-4, -10, and -13 was not reversed by the combined pretreatment with the opioid receptor antagonist naloxone. IL-4, -10, or -13 significantly inhibited the release of both tumor necrosis factor (TNF)-alpha (60, 53, and 100%, respectively) and IL-1beta (80, 100, and 100%, respectively) by mice peritoneal macrophages obtained after local (i.p.) injection of zymosan. Antisera against IL-4, -10, and -13 potentiated both the zymosan-induced writhing response and the articular incapacitation. Our results demonstrate that IL-4, -10, and -13 display analgesic activity that is probably not due to endogenous opioid release. This analgesic effect could be related to a peripheral mechanism, probably via the inhibition of the release of the pro-inflammatory cytokines TNF-alpha and IL-1beta by resident peritoneal macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.