Abstract

Nitric oxide (NO) within the brain is known to have an important influence on sympathetic nerve activity (SNA). NO is found in the paraventricular nucleus (PVN), caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS), regions that project to the rostral ventrolateral medulla (RVLM), an area that is critical in the regulation of SNA. The aim of the present study was to determine whether neurons in the PVN, NTS and CVLM that project to the RVLM contain the neuronal isoform of nitric oxide synthase (nNOS) and are, therefore, capable of producing NO. Under pentobarbitone general anaesthesia, the retrogradely-transported tracer, rhodamine-tagged microspheres, were microinjected into the RVLM of rats (n = 6). Two weeks later, the animals were re-anaesthetised, perfused with para-formaldehyde and the brains were removed. Hypothalamic and medullary sections were processed for nNOS immunohistochemistry and the RVLM-projecting neurons were identified using fluorescence microscopy. We found nNOS-containing neurons were present throughout the PVN, CVLM and NTS and that these were intermingled with neurons that projected to the RVLM. Of the neurons in the PVN and CVLM that projected to the RVLM, approximately 12 ± 1% and 8 ± 3%, respectively, contained nNOS. In the NTS only 1 ± 1% of the neurons were double-labeled. This study highlights anatomical pathways emanating from the PVN and CVLM, in particular, which may contribute to the effects on SNA elicited by NO within the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call