Abstract

In this study, the antinociceptive, anti-hypernociceptive and toxic effects of orally administered (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC, 1–50mg/kg) were evaluated in mice. Se-PTC did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. Furthermore, in an open field test, Se-PTC did not alter the number of crossings and rearing. Se-PTC significantly reduced the amount of writhing when assessed by acetic acid-induced visceral nociception and attenuated the licking time of the injected paw in the early and late phases of a formalin test. In addition, Se-PTC reduced nociception produced by intra-plantar (i.pl.) injection of glutamate, capsaicin, cinnalmaldehyde, bradykinin, phorbol myristate acetate and 8-Bromo-cAMP. Se-PTC caused a significant increase in hot plate and tail-immersion response latencies, but the antinociceptive effect of Se-PTC in the tail immersion was not abolished by pretreatment with the non-selective opioid receptor antagonist, naloxone. Se-PTC (25mg/kg) significantly inhibited nociceptive behavior induced by intrathecal (i.t.) injection of glutamate, N-methyl-d-aspartate (NMDA) and (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD), but failed to affect nociception induced by kainate and α-amino-3-hydroxy-5-mehtyl-4-isoxazolepropionic acid (AMPA). Mechanical hypernociception induced by carrageenan and Complete Freund's Adjuvant was attenuated by Se-PTC administration. These results indicate that Se-PTC produces antinociception in several models of nociception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call