Abstract

Systemic administration of a cannabinoid agonist produces antinociception through the activation of pain modulating neurons in the rostral ventromedial medulla (RVM). The aim of the present study was to determine how a cannabinoid receptor agonist acting directly within the RVM affects neuronal activity to produce behaviorally measurable antinociception. In lightly anesthetized rats, two types of RVM neurons have been defined based on changes in tail flick-related activity. On-cells increase firing (on-cell burst), whereas off-cells cease firing (off-cell pause), just prior to a tail flick. The cannabinoid receptor agonist WIN55,212–2 was microinfused directly into the RVM while monitoring tail flick latencies and on- and off-cell activity. Microinfusion of WIN55,212–2 (2.0 μg/μl and 0.4 μg/μl) reduced the tail flick-related on-cell burst, decreased the duration of the off-cell pause, and increased off-cell ongoing activity. These changes were prevented by co-infusing the CB1 receptor antagonist, SR141716A (0.35 μg/μl), with WIN55,212–2 (0.4 μg/μl). Furthermore, 2.0 μg/μl WIN55,212–2 delayed the onset of the off-cell pause and increased tail flick latencies. Microinfusion of WIN55,212–2 to brain regions caudal or lateral to the RVM had no effect on RVM neuronal activity or tail flick latencies. These results indicate that cannabinoids act directly within the RVM to affect off-cell activity, providing one mechanism by which cannabinoids produce antinociception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.