Abstract

The segregation of Sb in Si layers grown by molecular beam epitaxy on Si substrates with the (111), (110), and (115) crystallographic orientations is studied; the results obtained for these orientations are compared with those obtained for the most widely used orientation (001). It is found that there is a qualitative similarity between the temperature dependences of the Sb segregation ratio (r) for all studied orientations; in particular, it is possible to separate two characteristic temperature ranges corresponding to the kinetically limited and equilibrium regimes of segregation. However, quantitatively, the values of r for the orientations under study differ significantly from those for the Si(001) case at the same temperatures. For all orientations, narrow temperature ranges within which the values of r vary by nearly five orders of magnitude are revealed for all dependences of r on the growth temperature. This finding allows us to adopt the method of selective doping, which was for the first time suggested by us for structures grown on Si (001) and is based on the controlled use of the segregation effect, to structures grown on Si substrates with an orientation different from (001). Using this method, selectively doped Si:Sb/Si(111) structures are fabricated; in these structures, a variation in the Sb concentration by an order of magnitude occurs at the scale of several nanometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.