Abstract
The stibinidene ArSbI (Ar = [2,6-(tBuN═CH)2-C6H3], 1) reacts with S2Tol2 (Tol = p-tolyl) to form ArSbIII(STol)2 (2), which upon treatment with pinacolborane, regenerates 1. These processes unveil an unprecedented antimony redox catalysis involving Sb(I)/Sb(III) cycling for the hydroboration of organic disulfides. Elementary reaction studies and density functional theory calculations support that the catalysis mimics transition metal processes, proceeding through oxidative addition, ligand metathesis, and reductive elimination. The thiophenols and sulfidoborates generated from the hydroboration of disulfides react in situ with α,β-unsaturated carbonyl compounds with the assistance of 1 as a base catalyst. These tandem reactions establish a one-pot synthetic method for β-sulfido carbonyl compounds, in which a stibinidene functions as a redox catalyst and a base catalyst successively, illustrating the versatility and efficiency of antimony catalysis in organic synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.