Abstract
ABSTRACTWe investigate how seasonal flow variations and a climatic regime that is dominated by the El Niño–Southern Oscillation (ENSO) influence Sb flux dynamics in an Australian river impacted by mining. Sampling (n = 496) spans a hydrologically complex 7‐year period of drought, bushfires and floods from 2016 to 2023, during which 17% of samples exceeded the Sb drinking water guideline concentration (3 μg L−1). Aqueous Sb (SbAq) concentration–discharge (C–Q) relationships are non‐continuous/non‐linear across the flow range, with chemodynamic behaviour at moderate flows reflecting hydrological connection to the primary Sb‐source area combined with variable dilution. In contrast chemostatic behaviour occurred at extreme low and high flows, reflecting hydrological disconnection from the source area and persistent dilution, respectively. SbAq was significantly positively correlated (p < 0.01, Spearman's ρ = 0.58) with a Q index representing the proportional contribution of sub‐catchment flow from the mineral‐field area, suggesting sufficient localised rainfall in the Sb mining‐impacted sub‐catchment contributes to downstream peaks in SbAq concentrations. Aqueous and particulate Sb (SbP) annual loads (La) during the study period spanned 24–5174 and 1.2–2820 kg, respectively and were strongly flow dependant with extreme interannual variability reflecting dry and wet years. We extrapolate daily load‐daily discharge (Ld–Qd) relationships for SbAq and SbP to estimate Ld over a 53‐year period (1970–2023) of continuous Q data (mean total Sb La = 1865 kg ± [SE] 247). Positive correlations between the annual Southern Oscillation Index and both Sb La (p < 0.05) and proportional SbP La over 53 years suggests ENSO fluctuations influence annual Sb transport dynamics. Upstream SbP load estimates correspond with downstream estimates of coastal floodplain sedimentary Sb mass, with approximately 10%–45% of the estimated SbP exported downstream since approximately 1880 accumulated on the Macleay coastal floodplain. Data suggest at current rates of export, complete flushing‐leaching of mine tailings‐derived Sb from the upper Macleay catchment may take in the order approximately 600–1000 years.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.